Vaccination mitigates the effect PRRSv infection has on the pharmacokinetics of ceftiofur crystalline free acid in pigs.

J. W. Sparks1, D. N. Day1, L. A. Karriker1, L. W. Wulf1, J. Q. Zhang1, J. L. Bates1, J. S. Ellingson1, R. Gehring2, J. F. Coetzee1

1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA. 2Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.

Objectives
- Determine if PRRS modified live virus (MLV) alone impacts the pharmacokinetic (PK) profile of ceftiofur crystalline free acid in pigs, as wild-type infection does
- Determine if PRRS MLV vaccination prevents PK changes when vaccinated pigs are challenged with a wild-type PRRS virus (PRRSv)

Conclusions
- PRRSv wild-type challenge → changes ceftiofur pharmacokinetics, decreased AUC (agreement with other studies on ceftiofur PK in diseased animals)
- Ingelvac® PRRS MLV vaccination → no change of Excede® pharmacokinetics (novel research)
- Ingelvac® MLV vaccination prior to PRRSv wild-type challenge → prevents Excede® pharmacokinetic changes observed in unvaccinated PRRSv wild-type challenge (novel research)

Relevance to Practitioners
- PRRSv infection negatively influences absorption, distribution, metabolism, or excretion of ceftiofur; this is primarily observed as lower antimicrobial concentrations in vasculature
- PRRSv vaccination has potential to preserve ceftiofur pharmacokinetics when pigs are faced with PRRSv wild-type challenge

Continuing Research
- Further work should be completed to determine the cause of the observed pharmacokinetic changes
- The present study did not measure bioavailability (F); significant changes in plasma drug clearance and volume of distribution may have been influenced by bioavailability; further research could help determine influence of bioavailability on clearance and volume of distribution (i.e. how for absorption from injection site influence pharmacokinetics)
- Analogous work with other antimicrobials and vaccinations could be done to determine if similar trends would be observed

Results
- Viral diagnostics and characterization confirmed no compromise of study design
- No observed difference between Control, Vx groups, and Vx+Challenge groups
- Compared to Control Group, Challenge had 4AUC₀₋₂₄ /F, V₉/F

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Vx</th>
<th>Challenge</th>
<th>Vx+Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>0-24</sub></td>
<td>2.64 (2.57)</td>
<td>2.64 (2.57)</td>
<td>2.64 (2.57)</td>
<td>2.64 (2.57)</td>
</tr>
<tr>
<td>Area Under the Curve</td>
<td>260.00 (299.00)</td>
<td>260.00 (299.00)</td>
<td>260.00 (299.00)</td>
<td>260.00 (299.00)</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>29 (38.56)</td>
<td>29 (38.56)</td>
<td>29 (38.56)</td>
<td>29 (38.56)</td>
</tr>
<tr>
<td>Peak Concentration</td>
<td>0.01692</td>
<td>0.01692</td>
<td>0.01692</td>
<td>0.01692</td>
</tr>
<tr>
<td>Terminal half life</td>
<td>2.61 (3.52)</td>
<td>2.61 (3.52)</td>
<td>2.61 (3.52)</td>
<td>2.61 (3.52)</td>
</tr>
<tr>
<td>Cl/F (λ<sub>1</sub>/2)</td>
<td>53.0 (53.0)</td>
<td>53.0 (53.0)</td>
<td>53.0 (53.0)</td>
<td>53.0 (53.0)</td>
</tr>
<tr>
<td>Vol/F</td>
<td>270 (310)</td>
<td>270 (310)</td>
<td>270 (310)</td>
<td>270 (310)</td>
</tr>
</tbody>
</table>

Summary of PRRSv carrier diagnostics and viral characteristics

- **Control**: NP 10/10, V_x 10/10, V_x+Ch 10/10
- **Vx**: V_x 10/10, V_x+Ch 10/10
- **Challenge**: V_x 10/10, V_x+Ch 10/10

Concentration vs time curves for mean plasma concentrations of desfuroylceftiofuracetamide (DCA).